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A reaction–diffusion system describing the electrolyte diode is investigated. This consists
of a chemically crosslinked polyvinylalcohol (PVA) hydrogel cylinder in which apH gradient
is provided by having an acid and a base maintained at constant concentrations in reservoirs
at each end of the one-dimensional reactor. A potential difference of a given strength is also
applied across the gel cylinder. Previous experimental studies of the current–voltage charac-
teristics (CVC) have shown two distinct cases, depending on whether a positive or negative
potential difference was applied. The slopes of the linear current–voltage response curve are
substantially different in the two cases, that in the ‘forward’ case being typically several or-
ders of magnitude greater than that in the ‘backward’ case. Thus the system behaves like a
semiconductor diode. The stationary concentration distribution for the different ions is de-
scribed by a system of reaction–diffusion equations involving migration caused by the electric
field. An approximate solution of these equations, using a simplified model, is presented
and compared with results obtained by solving the full system numerically. The concen-
tration profiles obtained from the numerical solution confirm the validity of the simplified
model.

KEY WORDS: electrolyte diode, reaction–diffusion, electro-diffusion, Nernst–Planck equa-
tions
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1. Introduction

Hydrogel reactors are used extensively to study the complex spatial and spatio-
temporal structures that can arise in chemical systems. These reactors, so called CFURs
(continuously fed unstirred reactors), developed initially in Texas [1,3] and Bordeaux
[2], were constructed originally to study reaction–diffusion systems, especially chemical
waves and Turing structures in a medium free of convection. They have subsequently
proved to be an extremely versatile experimental procedure and have been used to show
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that chemical systems, appropriately arranged, can sustain a wide variety of patterning
processes. Much of this work is reviewed in [4,5].

A new version of this reactor, in which gradients of electrical potential as well
as concentration gradients can be maintained, has been devised recently by Noszticzius
and co-workers [6–8]. The main part of this reactor consists of a chemically crosslinked
polyvinylalcohol (PVA) hydrogel cylinder in which a pH gradient is provided by having
an acid and a base maintained at constant concentrations in reservoirs at each end of
the one-dimensional reactor, HCl and KOH being used in the experiments. A potential
difference of a given strength is also applied across the gel cylinder. The acid and base
dissociate into their respective ionic components, specfically H+, OH−, Cl− and K+.
These components diffuse and migrate under the action of the applied electric field,
producing an electric current within the reactor. The experimental results are presented
in terms of the dependence of this current on the applied potential difference.

The experiments [6] were performed specifically with HCl and KOH having equal
concentrationsc0 in their respective reservoirs at the ends of the reactor (with a zero
concentration of the other reactant also being maintained there). Two distinct cases were
seen, depending on whether a positive or negative potential difference was applied. In
the ‘forward’ case the electric field was applied so that it is the K+ and Cl− ions from
the KOH and HCl solutions that migrate through the reactor, where they form a KCl
solution, at concentrationc0. In the ‘backward’ case the tendency is for the OH− and
H+ ions (from the KOH and HCl solutions respectively) to migrate into the reactor. In
both cases, a linear current–voltage response curve is seen for sufficiently large applied
voltages. However, the slopes of these curves are substantially different in the two cases,
that in the ‘forward’ case being typically several orders of magnitude greater than that in
the ‘backward’ case. Thus the system behaves like a semiconductor diode.

One reason suggested for this marked difference between the two cases is that, in
the ‘forward’ case, the current is carried mostly by the K+ and Cl− ions (with the con-
tribution from the H+ and OH− ions being negligible). These ions achieve the constant
concentrationc0 throughout most of the reactor gel, which consequently has a relatively
low impedance. In the ‘backward’ case, the applied electric potential is such that the
K+ and Cl− ions cannot migrate far from their respective ends. The H+ and OH− ions
are now the ones that are “pulled” into the reactor under the effect of the electric field,
where they react to form a zone of pure water. This zone, where there are only low con-
centrations of H+ and OH− ions because of the reaction between them, has a relatively
high impedance and it is where the majority of the potential drop occurs. Thus relatively
large voltages need to be applied to produce a significant current.

A theoretical explanation for these phenomena was proposed in [6] and [8]. The
stationary concentration distribution for the different ions is described by a system of
reaction–diffusion equations involving migration caused by the electric field. An ap-
proximate solution of these equations, using a simplified model, was presented in [6,8].
The basic assumption behind this model is that the reaction between the H+ and OH−
ions takes place in very narrow reaction layer(s), negligible in extent compared to the
total length of the reactor. Therefore, in the simplified description the one-dimensional
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reactor is divided into three parts: an alkaline, an acidic and a neutral zone, where no
reaction is assumed to take place. The thin reaction layers act as division points be-
tween these regions. The ionic currents can be determined separately in each zone and,
to describe the whole system, we add the contributions from these zones (neglecting the
thickness of the reaction layers). Using this simplified model, approximate formulas
for the current–voltage characteristics (CVC) can be derived theoretically (see formulas
(2.1) and (2.2) in [8]).

The purpose of this paper is to study numerically the original (not simplified)
reaction–diffusion system. The concentration profiles obtained from the solutions for
the full system confirm the validity of the simplified model for the ‘forward’ case and
enable us to derive an improved version of the simplified model for the ‘backward’ case.
The approximate formulas for the CVC derived from the simplified model are checked
against values obtained from the full system. We start by describing our model.

2. Model

The starting point for deriving our model is the Nernst–Planck equations relating
the fluxJi to the concentrationci of theith chemical species to gradients of concentration
and electrical potential. These equations can be expressed in 1D geometry (which is
what we consider) as (see [9,10], for example)

Ji = −Di

(
dci
dx
+ F

RT
zici

dφ

dx

)
(1)

for each species. We label the ionic species by

A− ≡ OH−, B+ ≡ H+ (the reacting species)U+ ≡ K+, V − ≡ Cl−.

In (1) x measures distance along the reactor (of lengthL), Di andzi are the diffusion
coefficients and ionic charges (zA = zV = −1, zB = zU = +1), respectively,F andR

are Faraday’s and the gas constants,T is absolute temperature (taken as constant) andφ

is the electrical potential.
The mass transport equations are then derived using the fluxes given in (1), the

reaction

H+ +OH− � H2O rate:
d[H+]

dt
= d[OH−]

dt
= k0

(
K − [H+][OH−]) (2)

and the corresponding ionic charges, as

DA

(
a′ − F

RT
aφ′

)′
+ k0(K − ab) = ȧ,

DB

(
b′ + F

RT
bφ′
)′
+ k0(K − ab) = ḃ,

DU

(
u′ + F

RT
uφ′

)′
= u̇, (3)
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DV

(
v′ − F

RT
vφ′
)′
= v̇,

where primes (dots) denote differentiation with respect to distance (time), and wherea,
b, u andv are the concentrations ofA−, B+, U+ andV −, respectively. The system is
completed by the local electroneutrality condition

b + u− a − v = 0. (4)

Note that condition (4) is, in effect, a reduced form of Poisson’s equation for the potential
and is valid when the Debye length can be assumed small (as it is here).

The currenti is related to the fluxes through

i = F(−JA + JB + JU − JV ). (5)

In a steady, 1D system the condition, from Maxwell’s equations, thati be divergence-
free means thati is a constant.

We start by making equations (3), (4) dimensionless by writing

x̄ = x

L
, a = c0ā, b = c0b̄, u = c0ū, v = c0v̄,

(6)

φ = F

RT
φ, i = FDAc0

L
I.

We are further assuming a steady state configuration for the reactor. Applying (6) in
equations (3) (for the steady state) gives the dimensionless version of our model as, on
dropping the bars for convenience,(

a′ − aφ′
)′ + α(κ − ab)= 0,

δB
(
b′ + bφ′

)′ + α(κ − ab)= 0,
(7)

δU
(
u′ + uφ′

)′ = 0,

δV
(
v′ − vφ′

)′ = 0,

where

δB = DB

DA

, δU = DU

DA

, δV = DV

DA

are the ratio of diffusion coefficients and where the dimensionless parametersα andκ

are given by

α = k0c0L
2

DA

, κ = K

c2
0

.

We can incorporate the (dimensionless) currentI into the system using the ap-
proach suggested by Snita and Marek [11]. From the dimensionless versions of equa-
tions (1) and (5) and electroneutrality (4), we obtain

I = a′(1−δV )−b′(δB−δV )−u′(δU−δV )−E
(
a(1−δV )+b(δB+δV )+u(δU+δV )

)
, (8)
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whereE = −dφ/dx is the (dimensionless) electric field. Equation (8) allowsE to be
written in terms ofI , with equations (7), now in terms ofa, b, u, becoming

a′′ + (aE)′ + α(κ − ab)= 0,

δB
(
b′′ − (bE)′

)+ α(κ − ab)= 0, (9)

δU
(
u′′ − (uE)′

)= 0,

whereE is given by

E = −dφ

dx
= I − a′(1− δV )+ b′(δB − δV )+ u′(δU − δV )

a(1− δV )+ b(δB + δV )+ u(δU + δV )
(10)

and whereI is a constant (the current).v is then determined from (4).
The boundary conditions to be applied are (assuming equal concentrations of KOH

and HCl in the reservoirs)

a = u = 1, b = 0, φ = 0 onx = 0,
(11)

a = u = 0, b = 1, φ = # onx = 1,

where the constant (dimensionless) potential difference# can be either positive or neg-
ative.

3. Numerical method

Problems with the iterative convergence of the numerical scheme were encoun-
tered when trying to solve the two-point boundary-value problem (7), (11) directly for
the steady states using shooting methods. Hence, it was decided to adopt an alterna-
tive approach, which worked well in all the cases treated. The initial-value problem
corresponding to equations (9) (along the lines of equations (3)), subject to boundary
conditions (11) and taking prescribed profiles fora, b andu as initial conditions, was
considered. The currentI was fixed at a given value and the electric field was calculated
from (10). An explicit scheme, based on the predictor–corrector method, was used to
solve this initial-value problem numerically, integrating until a steady state was achieved
(to at least 5 decimal places in all three variables at each grid point). From the steady
state electric fieldE(x), # was then calculated using

# = −
∫ 1

0
E(x)dx. (12)

It was found that a steady state was achieved relatively quickly, thus enabling the
CVC to be readily built up, for given values of the parametersδB, δU , δV , α and κ,
over successive runs. For all the results presented below we took 200 spatial grid points
across the reactor.
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4. Simplified theoretical description

Here we obtain a solution of equations (4), (7), (11) when the reaction term is
neglected. To determine the approximate formulas for our simplified models described
below, we consider a reactor of (dimensionless) lengthd and take as boundary conditions
a = ai , b = bi , u = ui , v = vi (i = 1,2) onx = 0 andx = d, respectively.

With α = 0, equations (7) can be expressed as

a′ − aφ′ =−JA,

δB(b
′ + bφ′)=−JB,

(13)
δU(u′ + uφ′)=−JU,

δV (v
′ − vφ′)=−JV ,

with the (dimensionless) current given in terms of the now dimensionless fluxesJi as

I = JB + JU − JA − JV .

Adding equations (13) and using electronuetrality (4),φ′ can be eliminated. Inte-
grating the resulting equation and applying the new boundary conditions gives

a + b + u+ v = 2C(x) = 2(a1 + v1)

(
1+ (β0− 1)

x

d

)
, (14)

where

β0 = a2+ v2

a1+ v1
= b2+ u2

b1+ u1
.

Electroneutrality then gives

a + v = b + u = C(x). (15)

Also, from equations (4), (7), (14), we have that

[
(a + b + u+ v)φ′

]′ = 0, i.e.,
(
C(x)φ′

)′ = 0, (16)

from which it follows, on applying the boundary conditions thatφ = 0 atx = 0 and
φ = 'φ atx = d, that

φ = 'φ ln(1+ γ x)

ln(1+ γ d)
, (17)

whereγ = (β0− 1)/d andγ �= 0. For the caseγ = 0, β0 = 1 we obtain

φ = 'φ
x

d
. (18)
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If we now multiply each of the equations in (13) by eφ or e−φ as appropriate and
integrate over the range 0 tod, we can obtain the fluxes as

JA = −a2e−'φ − a1

D−
, JB = −δB(b2e'φ − b1)

D+
,

JU = −δU(u2e'φ − u1)

D+
, JV = −δV (v2e−'φ − v1)

D−
,

(19)

where the denominators in (19) are

D± =
∫ d

0
e±φ(x) dx.

Using the above expressions forφ(x) in D±, the fluxesJi (i = A,B,U, V ) can be
evaluated and then using these in the expression forI gives

I = (β0− 1)(1−'φ/ ln β0)(a2e−'φ − a1+ δV (v2e−'φ − v1))

d(β0e−'φ − 1)

− (β0− 1)(1+'φ/ ln β0)(δU (u2e'φ − u1)+ δB(b2e'φ − b1))

d(β0e'φ − 1)
(20)

for β0 �= 1. Whenβ0 = 1 (γ = 0) we obtain the simpler expression

I ='φ

(
(a2e−'φ − a1)+ δV (v2e−'φ − v1)

d(1− e−'φ)

)

−'φ

(
δU(u2e'φ − u1)+ δB(b2e'φ − b1)

d(e'φ − 1)

)
. (21)

We are now in a position to assess the significance of these results for the experimental
measurements presented in [6–8]. However, before doing so we examine the values of
the various dimensionless parameters appropriate to these experiments.

5. Parameter values

In the experiments, the concentrationc0 of KOH and HCl in the reservoirs can be
changed for different runs (as well as the applied potential drop#). We need to be able
to estimate the values of the dimensionless parametersα andκ appropriate to a given
value ofc0. To calculate the constantK we note that, in chemical equilibrium,

k0[H+][OH−] − k−[H2O] = 0, giving K = k−[H2O]
k0

,
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wherek0 andk− are the forward and reverse rate constants in (2). Usingk0 = 1.3×
1011 M−1 s−1, k− = 2.4× 10−5 s−1 and the concentration of water as [H2O]= 55.6 M,
we obtainK = 1.0× 10−14 M2. For a givenc0, α andκ are related by

κ = K(k0L
2)2

(DAα)2
= 6.25× 1012

α2
, (22)

on taking valuesDA = DOH = 5.24× 10−5 cm2s−1 andL = 0.1 cm for the reactor.
Values ofc0 ranging fromc0 � 10−7 M (the smallest it is reasonable to take ex-

perimentally) toc0 � 0.1 M are used, suggesting a range ofα from 107 to 1012 as being
pertinent to the experimental observations. To ease the computational problems caused
by having extremely large values forα, we conentrate on two specific cases at the lower
end of theα range, namely the cases

(i) α = 107, κ = 0.0625
(
c0 = 4× 10−7),

(ii) α = 108, κ = 6.25× 10−4
(
c0 = 4× 10−6

)
.

We show that our approximate formulas (derived below) are in excellent agreement with
the numerical solutions for these two cases. This gives us confidence in assuming that
these approximate formulas are reliable estimates for the CVC for the whole range ofα

(andκ) appropriate to the experiments.
The values of the diffusion coefficients given in [8] suggest taking valuesδB =

1.77,δU = 0.39 andδV = 0.37.

6. Forward case

6.1. Simplified theory

In the ‘forward’ case# is negative (as set up in our model), giving positive values
for I . In this case it is the K+ and Cl− ions that are attracted into the reactor by the
applied electric field, the H+ and OH− ions remain close to their respective ends. Thus
we expect reaction (2) between H+ and OH− not to occur within the reactor and the
reaction-free description given above should present a reliable guide for the CVC. To
obtain this we putd = 1, 'φ = # in (21) and apply the boundary conditions (11), to
get

I = #
(δU + δV − (1+ δB)e#)

e# − 1
. (23)

When# is large (and negative)

I ∼ (δU + δV )|#| = 0.76|#| as#→ −∞ (24)

giving a linear CVC when|#| is large. Formula (24) is equivalent to the approximate
expression given in [6,8].

We now examine relationship (24) from numerical solutions of the full system (9)–
(11), including the reaction term.
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Figure 1. The current–voltage plot for the ‘forward’ case obtained from a numerical integration of the
initial-value problem forα = 107 (δB = 1.77, δU = 0.39, δV = 0.37). Expression (24) is shown by the

broken line.

6.2. Numerical results

The initial-value problem was solved numerically for a range of values ofI until a
steady state was achieved and the corresponding potential drop# calculated from (10),
(12). Results forα = 107 are shown in figure 1, with a plot ofI against|#|. Also shown
in this figure (by the broken line) is expression (24) and we can see that there is excellent
agreement between the numerical results and the analytic expression obtained from our
simplified theory. The differences between the two sets of results occur at lowI (or |#|)
where the simplified theory is not expected to be applicable.

The simplified approach requires that the system be essentially reaction-free, with
OH− and H+ ions not penetrating far into the reactor. This can be seen in the profile plots
in figure 2 (forI = 20.0, # = −26.324). These plots are typical for the higher values
of I (and |#|) and show that the concentrations of K+ and Cl− are uniform over most
of the length of the reactor, with the fall to zero concentrations at their respective ends
being achieved in thin boundary-layer regions close to these ends. The concentrations
of H+ and OH− both fall to zero rapidly in these boundary-layer regions.

The profiles shown in figure 2 justify our simplified model for the ‘forward’ case,
which provides a reliable guide for calculating the CVC for the reactor in this case (see
also figure 1). We now consider the ‘backward’ case.

7. Backward case

For this caseI is negative, giving# positive, and it is now the OH− and H+ ions
that are attracted into the reactor, with the K+ and Cl− ions remaining near their respec-
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Figure 2. Concentration profiles for the ‘forward’ case obtained from a numerical integration of the initial-
value problem forI = 20.0 (# = −26.324),α = 107 (δB = 1.77,δU = 0.39,δV = 0.37).

tive ends. The OH− and H+ ions react (via (2)) in the central part of the reactor, forming
a region of low ionic strength (neutral region) with a consequent large potential drop
needed to maintain a given current. There will also be regions close to the ends of the
reactor which contain either K+ or Cl− ions, the alkaline and acidic regions respectively.
This is illustrated in figure 3 with typical profile plots for the ‘backward’ case, obtained
from the numerical integration forα = 108 andI = −16.0, (# = 159.1). The three
distinct concentration regions can clearly be seen in figures 3(a), (b). There is a high
(negative) constant fieldE in the central region (figure 3(c)) giving the dominant part of
the potential drop across the reactor. The reaction between OH− and H+ is confined to
narrow regions at the junction between the different concentration regions (figure 3(d)).
Note also the rapid fall inE within these reaction regions. The above considerations
motivate us to construct a three-region model for the ‘backward’ case.

7.1. Simplified model

Our model consists of three separate (reaction-free) regions. There is a central
(neutral) region, of extentd1, in which there are only OH− and H+ ions present. This
region is in chemical equilibrium which, with electroneutrality (4) and expressions (9),
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Figure 3. Concentration profiles for (a)a ≡[OH−], b ≡[H+], (b) u ≡[K+] andv ≡[Cl−], (c) the electric
field E, and (d) reaction rateR = α(κ − ab) for the ‘backward’ case obtained from a numerical integration
of the initial-value problem expression forI = −16.0 (# = 159.1), α = 108 (δB = 1.77, δU = 0.39,

δV = 0.37).
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(10), gives

a = b = √κ, u = v = 0, E = I√
κ(1+ δB)

. (25)

The electric field is constant (and negative sinceI is) in this region, given by (25). The
potential drop'φ1 across the neutral region is then

'φ1 = |I |d1√
κ(1+ δB)

. (26)

There is a region close to the KOH reservoir (alkaline region) in which only K+
and OH− ions are present. The change in the concentration ofb (H+ ions) from

√
κ in

the central region to zero in the alkaline region is achieved in the narrow reaction zone
between these two regions (see figure 3). From (14), (15), (17) we have

a = u = 1+ γ x, b = v = 0, φ = 'φ2 ln(1+ γ x)

ln(1+ γ d2)
, whereγ = −(1−√κ)

d2
(27)

in the alkaline region, taking the potential drop across this region, of extentd2, as'φ2.
We can calculate the (dimensionless) fluxesJA andJU from (19), or directly from (13)
using (27), as

JA = −γ
(

1− 'φ2

ln(1+ γ d2)

)
, JU = −δUγ

(
1+ 'φ2

ln(1+ γ d2)

)
. (28)

Since there is no K+ in the central region and this species is not involved in the reaction,
JU must also be zero in the alkaline region, giving

'φ2 = − ln(1+ γ d2) = − ln
√
κ and JA = −2γ.

Then, since in this region|I | = JA = −2γ , we obtain

d2 = 2(1−√κ)

|I | . (29)

The region close to the HCl reservoir (acidic region) has only H+ and Cl− ions. In
this region, of extentd3 < x < 1, we have, from (14), (15), (17),

b = v =
(

1−√κ

1− d3

)(
x − d3 −√κ

1−√κ

)
, a = u = 0,

(30)
φ = − 'φ3

ln
√
κ

ln

(
x − γ̄

d3− γ̄

)
, whereγ̄ = d3 −√κ

1−√κ
,

assuming a potential drop of'φ3 across this region. The change in the concentration of
a (OH− ions) from

√
κ in the central region to zero in the acidic region is achieved in
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the narrow reaction zone between these two regions (again see figure 3). From (30) (or
from (19)) we can calculate the fluxesJB andJV as

JB = −δB
(

1−√κ

1− d3

)(
1− 'φ3

ln
√
κ

)
, JU = −δV

(
1−√κ

1− d3

)(
1+ 'φ3

ln
√
κ

)
. (31)

Since there is no Cl− in the central region and this species is not involved in the reaction,
JV must also be zero in the acidic region, giving

'φ3 = − ln
√
κ and JB = −2δB

(
1−√κ

1− d3

)
.

Since, in this region|I | = −JB , we obtain

d3 = 1− 2δB(1−√κ)

|I | . (32)

Now d1 = d3 − d2, and hence expressions (29), (32) give

d1 = 1− 2(1+ δB)(1−√κ)

|I | . (33)

Assuming that the potential drop occurs only across the central region, expression (26)
then gives

# = |I | − 2(1+ δB)(1−√κ)√
κ(1+ δB)

, (34)

from which we get the CVC

|I | = √κ(1+ δB)#+ 2(1+ δB)
(
1−√κ

)
. (35)

Similar approximate expressions were derived in [6,8]. The advantage of the present for-
mulation is that the relationship between current and potential drop is in dimensionless
form.

If we also include the potential drop across the alkaline and acidic regions, we add
in a term−2 ln

√
κ to the right hand side of (34), giving the slightly modified CVC

|I | = √κ(1+ δB)
(
#+ 2ln

√
κ
)+ 2(1+ δB)

(
1−√κ

)
. (36)

We now examine the approximate form for the CVC (35), or its modified version
(36), by comparing with numerical solutions of the initial-value problem.

7.2. Numerical results

Plots of the CVC for theα = 107 andα = 108 cases are shown in figure 4. In both
cases there is a linear relationship between|I | and# for reasonably large values with a
slight variation from linear only at smaller values of|I | (figure 4(a)). Results for specific
examples are shown in table 1. Using these results we can calculate the linear slopeSB
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Figure 4. The current–voltage plot for the ‘backward’ case obtained from a numerical integration of the
initial-value problem for (a)α = 107, (b) α = 108, with κ = 6.25× 1012α−2, (δB = 1.77, δU = 0.39,

δV = 0.37).

Table 1
Potential drop# for the ‘backward’ case calculated from the numerical integrations for a
given currentI for a range of values ofα, with κ = 6.25× 1012α−2. Approximate values

obtained from formulas (35) and (36) are also given, (δB = 1.77,δU = 0.39,δV = 0.37).

α I # From (35) From (36)

107 20.0 23.391 22.881 25.653
107 40.0 52.309 51.762 54.534
108 20.0 220.25 210.8 218.2
108 40.0 506.13 499.6 507.0
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of the CVC,SB = '|I |/'#, obtainingSB = 0.692 andSB = 0.06996, respectively.
These are in good agreement with expression (35) (or (36)), which has

SB = √κ(1+ δB) = 6.925× 106α−1 (37)

from (22). From this we can conclude that the simplified model predicts the slope of the
CVC to a very good approximation.

The values obtained from expressions (35) and (36) are also given in table 1. These
show that (35) gives a better approximation for the smaller values ofα (and consequent
larger values ofκ). However, it is expression (36) which provides a better estimate for
the more realistic larger values ofα (and smallerκ). This might be expected, as the sim-
plified model requires that the reaction zones be thin. A consideration of equations (9),
in the limit of largeα, suggests that the reaction zones are of thickness of O(α−1/3),
thinning asα is increased (andκ decreased). This leads us to regard expression (36) as
the more reliable guide to determine the CVC for the parameter ranges relevant to the
experiments.

The approximate formulas for the CVC for the ‘forward’ (24) and ‘backward’ (36)
cases show why there is a considerable difference in the slopes in the two cases. The
slopeSF for the ‘forward’ case isSF = (δU + δV ), here= 0.76, which is independent of
α andκ and remains of O(1) for all reservoir concentrationsc0. SB depends strongly on
α (andκ) from (37) decreasing with increasingα. It can become very small, of O(10−5)

or less, at the higher values ofα � 1012 corresponding to the higher values of reservoir
concentrationsc0 used in the experiments.

8. Conclusions

We have solved numerically the reaction–diffusion system (7) describing the elec-
trolyte diode and determined its current–voltage characteristics. Our results show (in
qualitative agreement with the experiments) that the slope of the CVC in the ‘forward’
case is very much greater than that in the ‘backward’ case. We compared our numerical
results with theoretical values obtained from a simplified approximate theory and found
very good agreement between the two sets of results. The only differences between the
two occurred at low voltages where the simplified theory is not expected to be applicable.

The concentration profiles obtained numerically confirm the simplifying assump-
tions of the approximate theory. In the ‘forward’ case (see figure 2) the concentrations
of K+ and Cl− are uniform over most of the length of the reactor, with the fall to zero
concentrations at their respective ends being achieved in thin boundary-layer regions
close to these ends. The concentrations of H+ and OH− are significant only in their
respective thin boundary-layer regions. Thus the capillary is filled almost entirely with
KCl solution, as assumed in the simplified theory. In the ‘backward’ case three distinct
concentration regions arise (clearly seen in figures 3(a), (b)) again in a good agreement
with the assumptions of the simplified theory. There is a central (neutral) zone (of pure
water) separating the alkaline and acidic regions. In these latter regions the KOH and
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HCl concentrations fall linearly from their boundary values to virtually zero in the cen-
tral zone. The reaction between OH− and H+ is confined to narrow layers at the two
ends of the central zone at the junctions with the acidic and alkaline regions.
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